Abstract:
PURPOSE: Our goal was to validate linear and nonlinear
intersubject image registration using an automated method (AIR 3.0)
based on voxel intensity. METHOD: PET and MRI data from 22 normal
subjects were registered to corresponding averaged PET or MRI brain
atlases using several specific linear and nonlinear spatial
transformation models with an automated algorithm. Validation was based on anatomically defined landmarks. RESULTS: Automated registration produced results that were superior to a manual nine parameter variant of the Talairach registration method. Increasing the degrees of freedom in the spatial transformation model improved the accuracy of automated intersubject registration. CONCLUSION: Linear or nonlinear automated intersubject registration based on voxel intensities is computationally practical and produces more accurate alignment of homologous landmarks than manual nine parameter Talairach registration. Nonlinear models provide better registration than linear models but are slower.